Fifth Semester B.E. Degree Examination, June/July 2016

Formal Languages and Automata Theory

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Define the following with examples: i) Alphabet, ii) String. (04 Marks)
 - b. Define DFA. Write the DFA's for the following languages on $\Sigma = \{a, b\}$.
 - i) The set of all strings containing the substring 'ab'.

ii) $L = \{\omega \mid |\omega| \mod 3 = 0\}$

(08 Marks)

(08 Marks)

(06 Marks)

c. Convert the following NFA to its equivalent DFA.

You was a second of the second

- 2 a. Define a regular expression. Also write the regular expressions for the following languages.
 - i) The set of all strings ending in the substring '00' on $\Sigma = \{0, 1\}$
 - ii) $L = \{a^n b^m \mid n \ge 4, m \le 3\}.$ (08 Marks)
 - b. Prove that every language defined by a regular expression is also defined by a finite automation. (08 Marks)
 - c. Write the \in -NFA for the regular expression $ab(a + b)^*$. (04 Marks)
- 3 a. State and prove pumping lemma for regular languages.
 b. Show that the language L = {aⁿbⁿ | n ≥ 0} is not regular.
 (06 Marks)
 (06 Marks)
 - c. Minimize the following DFA using table filling algorithm. (07 Marks)

δ	0	1
$\rightarrow q_1$	q_2	q_3
q_2	q_3	q 5
*q3	q_4	q_3
q_4	q_3	q 5
*q5	q_2	q_5

- 4 a. Define CFG. Design CFG's for the following languages:
 - i) $L = \{a^n b^{2n} \mid n \ge 0\}$
 - ii) $L = \{\omega \omega^R / \omega \in \{a, b\}^*\}$ (08 Marks)
 - b. Write the LMD, RMD and parse tree for the string '+*-xyxy' using the grammar
 - E \rightarrow +EE | *EE | -EE | x | y c. What is an ambiguous grammar? Show that the following grammar is ambiguous:

 $E \rightarrow E + E \mid E * E \mid (E) \mid id$ (06 Marks)

PART - B

- 5 a. Define a PDA and explain the working of it with a neat diagram. (05 Marks)
 - b. Design a PDA for the language $L = \{\omega\omega^R \mid \omega \in \{a, b\}^+\}$. Draw the transition diagram and also write the sequence of ID's for the string 'abba'. (10 Marks)
 - c. Convert the following CFG to an equivalent PDA:
 - $S \rightarrow aA$
 - A → aABC|bB|a
 - $B \rightarrow b$
 - $C \rightarrow c$

(05 Marks)

- 6 a. Eliminate the useless symbols and productions from the following grammar.
 - $S \rightarrow AB|AC$
 - $A \rightarrow aA|bAa|a$
 - $B \rightarrow bbA|aB|AB$
 - $C \rightarrow aCa|aD$
 - $D \rightarrow aD|bC$

(07 Marks)

- b. Define CNF and convert the following grammar into CNF.
 - $S \rightarrow ABa$
 - $A \rightarrow aab$
 - $B \rightarrow Ac$

(06 Marks)

- c. Prove that the family of context-free languages is closed under union, concatenation and star-closure. (07 Marks)
- Define a turing machine and explain the working of a basic turing machine with a neat diagram.

 (08 Marks)
 - b. Design a turing machine for the language $L = \{a^n b^n \mid n \ge 1\}$. Write the transition diagram for the same and also, indicate the moves made by the turing machine for the input 'aabb'.

(12 Marks)

- 8 Write short notes on:
 - a. Multitape turing machine
 - b. Post's correspondence problem
 - c. Applications of context-free languages
 - d. Chomsky hierarchy

.

(20 Marks)